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Abstract. In this paper we present the results of preliminary investigations into the structure 
of the infinite cluster in site percolation theory. It is shown how series expansions, for 
quantities defined as site and bond valency respectively, may be derived. The series are used 
to obtain a measure of the degree of ramification of the infinite cluster, and techniques for 
obtaining a free energy series for the infinite cluster in a site-dilute ferromagnet are 
discussed. 

1. Introduction 

The investigation in this paper relates to the nature of the infinite cluster in site 
percolation for the simple quadratic, triangular and simple cubic lattices. We shall 
consider the problem in terms of magnetic and non-magnetic sites, distributed with 
probabilities p and q, respectively, such that p + q = 1. Quantities termed site valency 
and bond valency are obtained in the form of series expansions for the infinite cluster 
(IC). The former is denoted by D'(v, q )  and represents the probability of a site in the IC 
having valency U (i.e. having U adjacent magnetic sites). The latter is denoted by 
I?'([, m, q )  and represents the probability of a bond in the IC having sites of valency 1 and 
m at either end. 

It is then shown how these series may be used to obtain estimates for lambda, a 
quantity defined originally by Domb and Stoll (1977) as a measure of the degree of 
ramification of the IC.. The highly ramified nature just above the percolation threshold 
is demonstrated, and the steady increase in compactness as q decreases to zero. Finally 
techniques are introduced by which we hope in the future to derive low-temperature 
expansions for the free energy of the IC. 

2. Site valency for the entire system 

When we consider the entire system, i.e. that composed of both finite and, if present, 
infinite clusters, we may define a quantity DE(v, q )  which denotes the probability of a 
site in the entire system having valency U .  Clearly we then have 
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in which D ~ ( u ,  4 )  is simply the probability of a site being in the ith cluster of finite size 
and having valency U. The summation runs over all finite clusters, and the factor (1 - 4 )  
in the denominator arises from the fact that if a site is in the infinite cluster it must, by 
definition, be magnetic. The remainder of this section is concerned with the derivation 
of DE(u, q ) ,  and the next section to the series X i  Dr(u, 4). 

The DE(v, 4) factors may be obtained in the form of a simple generating function. 
The site itself must be magnetic if U is to be greater than or equal to one, giving rise to a 
term p. It then has Q surrounding sites, where Q is the coordination number of the 
lattice under consideration. Each of these may increase the valency of the chosen site 
by one (with probability p )  or leave it unchanged (with probability 4 ) .  Therefore 
DE(u, 4 )  may be obtained as a binomial-type distribution 

D € ( u ,  4 )  = coefficient of X" in (1 -q)[q  + (1 - s)x]' (2.2) 

for U between 0 and Q. 
It is of interest to note that DE(u, q )  is a function only of 4 and Q, independent of the 

lattice structure. The results obtained for the entire system are therefore identical for 
the triangular and simple cubic lattices. Only the contribution of the finite clusters 
Dr(v,  q )  introduces the lattice dimensionality into the problem, and into the series 
D'b,  4 ) .  

3. Site valency for finite clusters 

The calculation of DF(u, 4 )  for a particular lattice requires the classification of all 
clusters of size N according to 

(i) the number of isolating sites required to surround the cluster; 
(ii) the number of sites with valencies 1 to Q in the cluster. 

All clusters which can be drawn on the lattice, and are identical under consideration of 
(i) and (ii), are summed to give their 'embedding' count. Classification of clusters 
according to (i) alone has been considered in a series of papers by Sykes and Gaunt 
(1976), Sykes and Glen (1976) and Sykes et a f  (1976a, b, c). 

The series X i  DF(u, 4 )  may be calculated from these embedding counts: 

where Ni is the number of sites forming cluster i, Pi is the number of perimeter sites 
isolating cluster i, Ei is the embedding count of cluster i and Di(u) is the number of sites 
of valency U in cluster i. The coefficients ar (u)  for the SQ, PT and sc lattices, based on 
clusters of up to 13,lO and 9 sites, respectively, are presented in tables 1 ,2  and 3. Limits 
may be easily placed on the accuracy of the number of terms using the perimeter results 
of Sykes and Glen (1976) and Sykes er a1 (1976b). For example, on the SQ lattice the 
first entry of fourteen sites (D14) is at q13, and hence our results are correct up to 4". 

4. Bond valency for the entire system 

Using the same approach as in 0 2, we define a quantity BE(/, m, q ) ,  denoting the 
probability of a bond in the entire system having sites of valencies 1 and m at either end. 
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Table 1. a,(v) for a simple quadratic lattice. 

r v 1 2 3 4  

6 4 
7 0 4  
8 8 2 4 1  
9 -24 30 0 -1 

10 112 -22 48 20 
11 -276 110 -40 -28 
12 876 -46 320 199 

Table 2. a,(v) for a triangular lattice. 

r v  1 2  3 4 5 6  

8 6 
9 -12 6 

10 24 -3 6 
11 -42 3 0 6 
12 84 21 8 -3 6 1 
13 -144 -45 -8 27 -12 -1 
14 288 189 120 -69 66 12 

Table 3. a,(v) for a simple cubic lattice. 

r v  1 2 3 4  5 6 

10 6 
11 -12 
12 6 
13 24 12 

15 78 27 8 
16 6 81 -20 
17 -198 -291 0 12 
18 390 510 112 -57 6 1 
19 -474 -588 -256 105 -36 -7 
20 684 588 264 42 90 21 

14 -66 -33 

21 -1302 -912 -12 -678 -48 -23 
22 1818 1623 -220 1947 -384 -55 
23 -606 -699 -56 -3651 1554 315 
24 -4878 -5568 288 5622 -3696 -839 

This leads to the equation 

with obvious notation for finite cluster contributions. 
Again, generating functions may be obtained for the BE(l, m, q ) ,  but now the lattice 

structure must be considered. For the loose-packed quadratic and simple cube lattices 
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we have a straightforward generalisation of (2.2). BE(l, m, q )  is given by the coefficient 
of X'Y" (which is the same as.the coefficient of X"Y') in 
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iQ(1 -q)'XY[q +(1 -q)XIQ-'[4 +( l -q)YIQ- '  (4.2) 
multiplied by a factor of two if If m to account for degeneracy. 

For the triangular lattice, however, the generalisation is not so immediate. There 
are two sites which, if chosen, are capable of increasing the valencies of both sites under 
consideration. We now find that BE(l, m, q )  for the triangular lattice is given by the 
coefficient of X'Y" or X"Y' in 

(4.3) 
again multiplied by two if 1 # m to account for degeneracy. Equations (2.2), (4.2) and 
(4.3), in fact, lead to the same results as Domb (1971) but presented, we feel in a more 
compact notation. 

3(1 --q)*XY[q + ( I  -4)XYI2[q + ( I  -s)XI3[q+(1 -q)Y13 

Table 4. b,(l, m )  for a simple quadratic lattice. 

r\l, m 1 , l  1,2 1,3 1,4 2,2 2,3 2,4 3,3 3,4 4,4 

6 2 
7 -4 8 
8 2 -12 12 4 8 
9 12 -24 -12 8 24 8 

10 -8 68 52 -38 28 12 18 12 2 
11 32 -160 -148 120 -44 -8 28 28 8 
12 -32 476 432 -276 280 212 58 88 32 

5. Bond valency for finite clusters 

The calculation of BF(l, m, q )  for a particular lattice is similar to that of D:(u,  q )  
requiring the classification of all clusters of size N according to 

(i) the number of isolating non-magnetic sites required to surround the cluster; 
(ii) the number of particular bond valencies within the cluster. 

All clusters which can be drawn on the lattice, and are identical under consideration of 
(i) and (ii), are summed to give their 'embedding count'. The series Ci  BF(1, m, q )  may 
be calculated from these results: 

I I 

= C  br(1, m ) q r  (5.1) 
r 

where B,(l, m )  is the number of bonds with valencies 1, m in cluster i. 
Results obtained for the SQ, PT and sc lattices are presented in tables 4, 5 and 6. 

These are based upon consideration of all clusters of up to sizes 11, 9 and 8, 
respectively. By consideration of the more compact clusters of larger sizes, we have 
produced results accurate to the powers given. In all cases the BF( l ,  1) term has been 
included for completeness, but is however a finite rather than an infinite series with a 
probability equal to that of an isolated bond. This ensures that B'(1, 1, q )  = 0, since the 
probability of finding an isolated bond in the IC must be zero. 
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6. Mean cyclomatic number 

The cyclomatic number of any cluster with n sites and e connections is defined by 

c = e - n + l .  (6.1) 

The average number of connections in an n-site cluster, (e), may be obtained from the 
D factors by multiplying by the appropriate number of connections and summing over 
all possible values for finite clusters: 

where $ denotes summation over all clusters of size n. For the entire system 

n Q  
2(1-q) o = i  

( e ) = -  1 v DE(v,  q )  = $npQ. (6.3) 

Dividing both sides of (6.1) by n, and taking the limit of large n, we obtain for the 
mean cyclomatic number per site: 

which may range from 0 to a value cmax = (30) - 1. Dividing (6.4) by Cmax gives us a 
normalised value: 

Combining (6.5), (6.3), (6.2) and (2.1) we can obtain a normalised value for the mean 
cyclomatic number per site for the IC. This we shall term lambda after Domb and Stoll 
(1977) and call the coefficient of compactness. (Note that in their case for the SQ lattice 
c,,, = 1.) Lambda is given by 

In order to calculate the exact value of A the sum over i in (6.6) should extend over 
all finite clusters, giving a set of infinite series in q. Since only so many of these terms can 
be calculated, approximations have to be formed to the series behaviour at higher 
orders of q. Pad6 approximants (e.g. Baker 1970) are used for this purpose, and 
fortunately give reasonable agreement between themselves. Typical plots of A as a 
function of p are given in figures 1, 2 and 3 for the lattices under consideration. 

The graphs are seen to be linear over a large part of the range p > pc ,  and correspond 
to the equation 

(6.7) 

This equation is, in fact, identical with that obtained for the behaviour of the entire 
system by using (6.3) and (6.5), and we can see equivalent behaviour for the triangular 
and simple cubic lattices (0 = 6 )  in the region p > 0.65. Asp is reduced to p c  the graphs 
begin to depart from straight-line behaviour, levelling out, and rapid oscillations set in 
when p is reduced below pc-a non-physical situation. 

A = ($0 - l)-'($pQ - 1). 
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Percolation probability 

Figure 1. Coefficient of compactness A plotted against percolation probability p for the 
infinite cluster on the so lattice. 

Psrcolotion probability 

Figure 2. Coefficient of compactness A plotted against percolation probability p for the 
infinite cluster on the PT lattice. 

Our results for the SQ lattice may be compared with those of Domb (1978), obtained 
by Monte Carlo techniques, and are seen to be in reasonable agreement. We can see 
that near p c h  is a small fraction of its maximum value of unity, corresponding to the idea 
of ramified clusters playing an important role in percolation theory. Furthermore; the 
infinite cluster is seen to dominate the system over a large part of its range, since its 
average behaviour is very close to the average for the entire system. 
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Figure 3. Coefficient of compactness A plotted against percolation probability p for the 
infinite cluster on the sc lattice. 

7. Low-temperature expansion 

We now proceed to outline the techniques for deriving a low-temperature expansion for 
the free energy of the IC in a site-dilute ferromagnet. The mean number of spins in the 
IC is given by 

M = N P ( p )  (7.1) 

where P ( p )  is the well known percolation probability. The Hamiltonian of the IC is 
given by 

in which (ij) runs over all nearest-neighbour spins in the IC and a, = f 1. 
The corresponding partition function can be obtained: 

ZE =$E exp (Ja,u,fkT) n exp (mHuJkT)  (7.3) 
(1) 

where $ is the sum over all spin states. Dividing out from this the spin-ordered state: 

z E = p  -MI2 z - M Q ' / 4  A ~ ( ~ ,  z )  (7.4) 
where p = exp ( - 2 m H / k T ) ,  Z = exp( - 2 J f k T )  and Q' is the mean coordination 
number of the IC derived from the relationship 

Q 

u = l  
Q ' =  uD'(u, 4 ) .  (7.5) 

AM(@, t) is an expansion formed by considering the energy change, from the ordered 
state, obtained by successively 'flipping' spins into orientations anti-parallel to the 
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external field. The first term in the series is unity, corresponding to no overturned spins. 
The next term arises from flipping one spin. There are M spins to choose from, each 
with a probability D'(v, q )  of having valency U and thus changing the energy of v 
interactions. Its contribution is therefore given by 

(7.6) 

When two spins are overturned, there are two cases to be considered, depending on 
whether or not the spins are adjacent. 

7.1. Adjacent spins 

If we overturn adjacent spins of degree 1 and m, then we will effectively change the sign 
of 1 + m  - 2  interactions. The probability of choosing two such spins is given by 
(MQ'/2)B1(1, m, q ) ,  giving rise to a term 

7.2. Disjoint spins 

Now the sign of 1 + m interactions will be changed. The number of such spins is found 
by subtracting the number of adjacent spins from the total number of pairs, and we find 
the terms 

AM(,u, t )  therefore becomes 

Q 

l ,m= l  
+ ( M Z  D'(1, q ) D ' ( m ,  q)r'+") 

m>l  

(7.9) 

Taking the logarithm of (7.9) we arrive at an expression for the free energy per site of 
the infinite cluster 
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(7.10) 

and we arrive at a series in p, whose coefficients are themselves series in q. Our present 
series are too short to come to any conclusions concerning the behaviour of (7.10), but it 
is hoped they will be lengthened. 
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